Laws of large numbers without additivity
نویسندگان
چکیده
منابع مشابه
Laws of Large Numbers for Random Linear
The computational solution of large scale linear programming problems contains various difficulties. One of the difficulties is to ensure numerical stability. There is another difficulty of a different nature, namely the original data, contains errors as well. In this paper, we show that the effect of the random errors in the original data has a diminishing tendency for the optimal value as the...
متن کاملON THE LAWS OF LARGE NUMBERS FOR DEPENDENT RANDOM VARIABLES
In this paper, we extend and generalize some recent results on the strong laws of large numbers (SLLN) for pairwise independent random variables [3]. No assumption is made concerning the existence of independence among the random variables (henceforth r.v.’s). Also Chandra’s result on Cesàro uniformly integrable r.v.’s is extended.
متن کاملon the laws of large numbers for dependent random variables
in this paper, we extend and generalize some recent results on the strong laws of large numbers (slln) for pairwise independent random variables [3]. no assumption is made concerning the existence of independence among the random variables (henceforth r.v.’s). also chandra’s result on cesàro uniformly integrable r.v.’s is extended.
متن کاملThe Laws of Large Numbers Compared
Probability Theory includes various theorems known as Laws of Large Numbers; for instance, see [Fel68, Hea71, Ros89]. Usually two major categories are distinguished: Weak Laws versus Strong Laws. Within these categories there are numerous subtle variants of differing generality. Also the Central Limit Theorems are often brought up in this context. Many introductory probability texts treat this ...
متن کاملThe Additivity of Crossing Numbers
It has long been conjectured that the crossing numbers of links are additive under the connected sum of links. This is a difficult problem in knot theory and has been open for more than 100 years. In fact, we do not even know that Cr(K1#K2) = Cr(K1) or Cr(K1#K2) = Cr(K2) holds in general, here K1#K2 is the connected sum of K1 and K2 and Cr(K) stands for the crossing number of the link K. The be...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 2014
ISSN: 0002-9947,1088-6850
DOI: 10.1090/s0002-9947-2014-06053-4